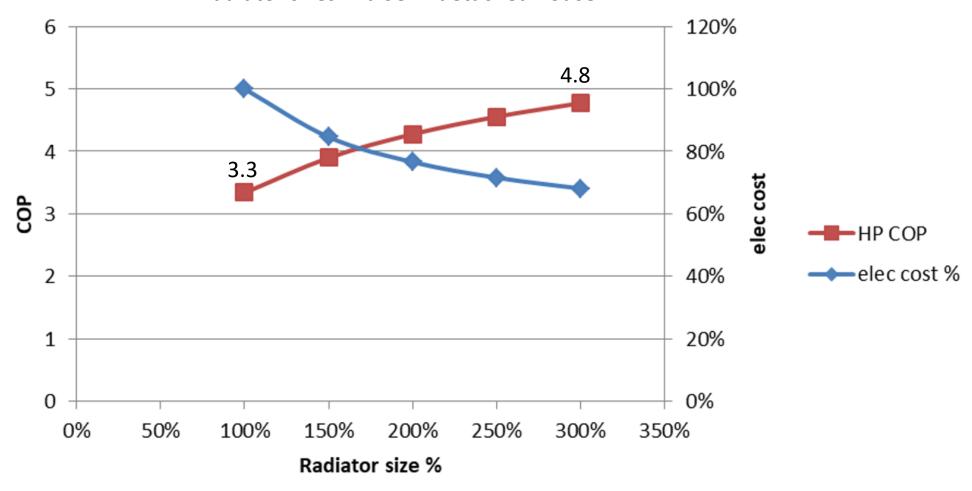

Retrofit: How Much Insulation for Efficient and Affordable Heat Pumps?

Tim Martel
AECB Standards & Certification Program Manager

12th March 2024

There is a range of answers depending on how you set up and run your ASHP First maximise the efficiency of the ASHP (points 1-3)

1. Run at a low temperature, AECB says <50C acceptable, < 45C good. Lower is even better, even down to 35C.



With permission from The Passivhaus Trust by Alan Clarke, AECB Services Engineer

3. Increase the radiator size, you can double, even treble it. Or have underfloor heating. The output of a radiator depends on its area and the temperature difference between it and the room.

Radiator sizes in a Semi detached house

With permission from Alan Clarke and Passivhaus Trust

- 4. Consider how much insulation is a sensible starting point -
- is it a good idea to have no insulation?

Step 1 does not specify any requirement for the insulation type or thickness, it is a performance standard and insulation levels required are indicated by the running cost calculation in which The standardised Space Heating cost using OfGem prices must be less than or equal to the running cost in the original building (or equivalent part if the building extended).

To keep the running costs of a heat pump manageable in a Step 1 retrofit we imagine you would have:

- cavity wall insulation (perhaps extracted and redone if poor)
- 300-400mm loft insulation
- at least double glazed windows

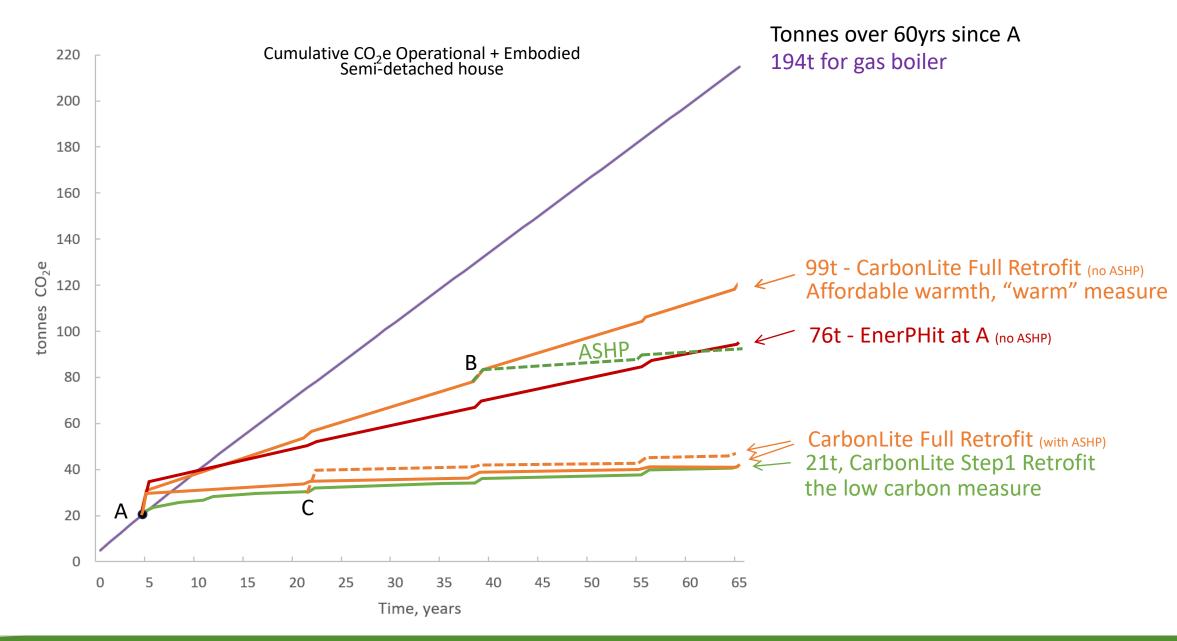
and fixed Step 1 criteria of

- Airtightness 5m3/m2.hr
- MEV or MVHR ventilation system (discussed later)

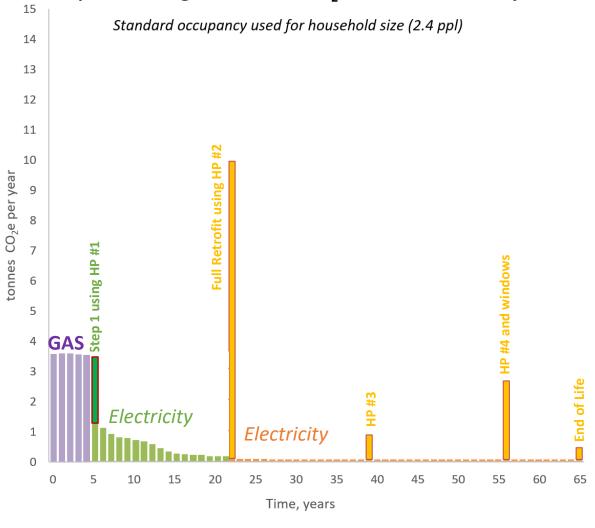
Image credit: The Green Age

Q. Step1 or Step-by-Step?

CarbonLite Retrofit has option - Step-by-Step method.

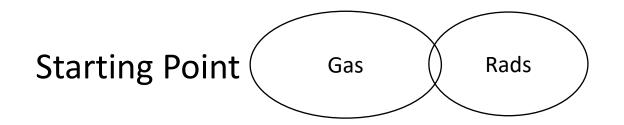

Step-by-Step allows the process to be done in stages.

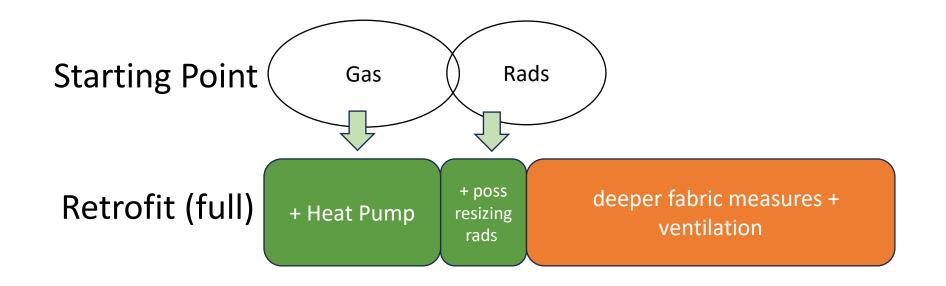
Step1 is the minimum permissible step in the Carbonlite Retrofit – Step-by-Step method. (Previously "Level 1").

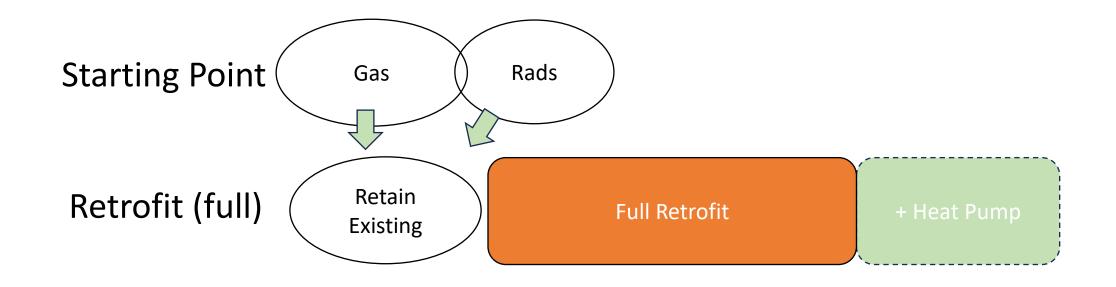

Q. The AECB has been promoting fabric first retrofit for many years, why is there a Step1 which doesn't include 'deep' fabric retrofit?

It's a good low-carbon interim measure

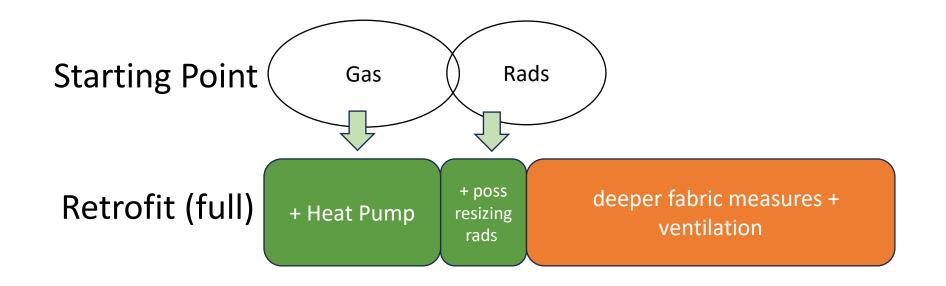
- anticipate how to achieve a full Retrofit in the future
- Energy and Carbon both important L Carb energy exp, disruptive. Not just Suppl, Demand side

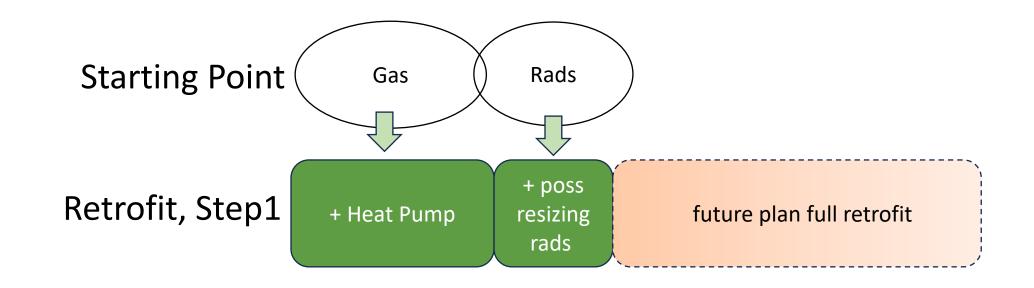

Space Heating & Embodied CO₂e of Retrofit Pathways

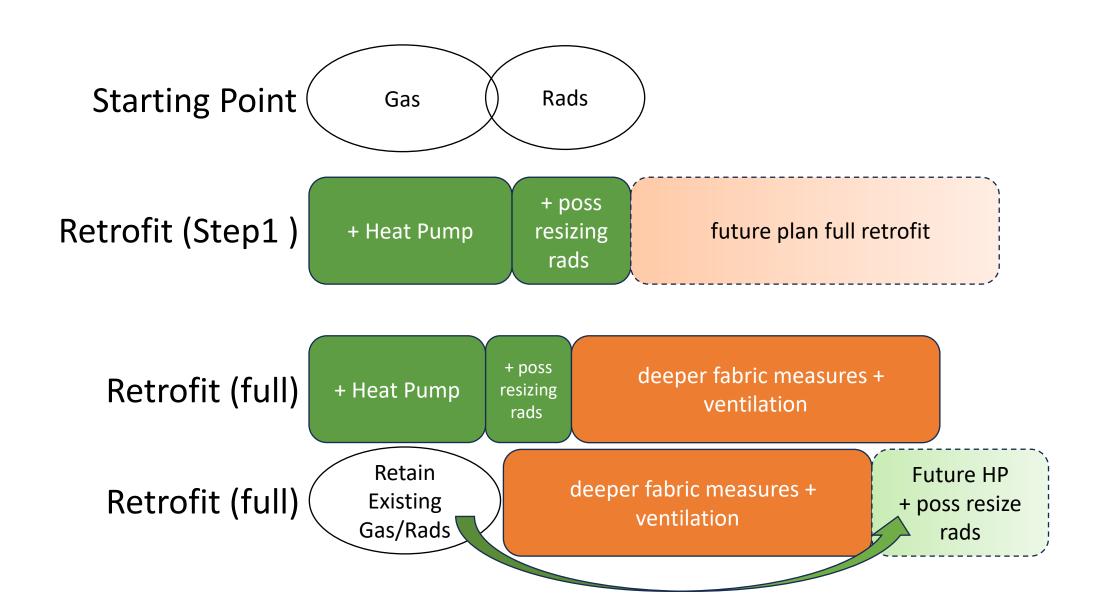


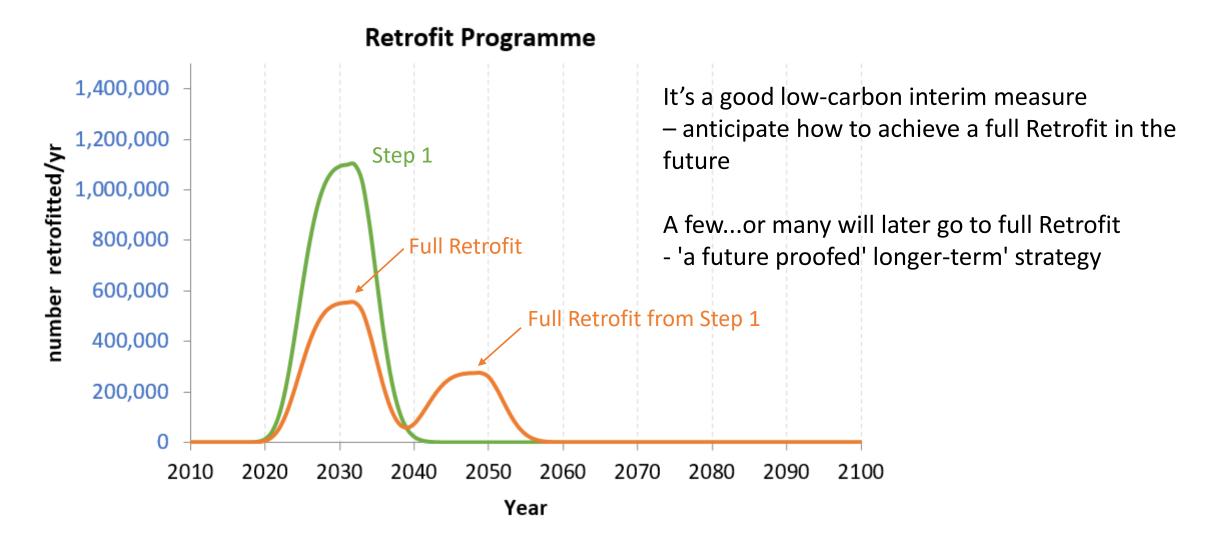

This is one scenario

Important and useful to have the ASHP quickly


In aggregate the difference will be increasingly important






HP optional for EnerPHit too

Q. With these 3 alternatives, what would a retrofit programme look like?

QUESTIONS

BREAK

We've looked at heat pump set up, some insulation, What other considerations?

This then takes us to "What is a good design of the whole building?"

Criteria	Carbonlite Retrofit Step-by-step	Carbonlite Retrofit	Carbonlite New Build	
Delivered space heating and cooling (kWh/m2/a)	report result	≤ 50 kWh/m².a (≤ 100 kWh/m².a with certifier-approved exemption)	≤ 40 kWh/m².a	
EITHER Primary Energy (PE, varies)	report result	report result	≤ 85 kWh/m².a	
OR Renewable (PER) (kWh/m2/anum)	report result	report result	≤ 75 kWh/m².a	
Ensure ventilation	Continuous MEV or MVHR mu	st be installed : follow PAS 2035 Annexe C or	as required by Part F of the Building Regulations.	
Airtightness (q50)	≤5.0 m³/m².h	≤2.0 m³/m².h	≤ 1.5 m³/m².h	
Thermal Bridges	N/A. If some additional & significant fabric measures are being replaced	Assumed to be less than 0.01 W/mK, else accounted for in PHPP or for retrofits a default heat loss factor may be used.	Assumed to be less than 0.01 W/mK, else accounted for in PHPP	
Surface Condensation (fRsi) assessed	or installed, certifiers will advise whether full Retrofit Standard requirements are applicable.	fRsi to meet criteria in PHPP, or 0.75 (as Building Regulations/ PAS2035), or local standards - whichever is more onerous.	fRsi to meet criteria in PHPP, or 0.75 (as Building Regulations/ PAS2035), or local standards - whichever is more onerous.	
Heating System	Change existing fossil fuel (or direct electric) heating system to a heat pump.	Existing heating systems may be retained, but a practical plan to allow for future low carbon heating supply must be in place.	Install a non fossil fuel system or connect to a low carbon district heating network.	
Thermal Comfort	PHPP modelled overheating risk, <1	g risk, <10% Acceptable (Guidance: <5% Good practice or <3% Best practice)		
Running cost comparison	Must be same/lower running costs than base case **	-	-	

Where a heat pump is installed

Certifiers must liaise with the building owner and the MCS heating system designer in order to ensure that:

Maximum flow temperature for the designed and installed heating system (space heating only)

no greater than 50°C; Best Practice - heating system is designed and installed for flow temp <45°C

What do we stand for?

Criteria	Carbonlite Retrofit Step-by-step
Heating System	Change existing fossil fuel (or direct electric) heating system to a heat
	pump. no greater than 50°C ; Best
Maximum flow temperature for the designed and	Practice - heating system is
installed heating system (space heating only)	designed and installed for flow temp <45°C

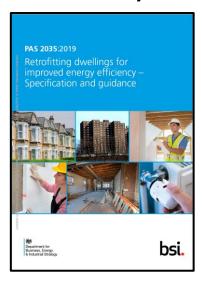
	<45°C		
EITHER Primary Energy (PE, varies)	report result		
OR Renewable (PER) (kWh/m2/anum)	report result		

1: Low Carbon

Does it run efficiently? ideally 45C but 50C aligns with Octopus Energy, main industry leader

No limit for PE/PER but concerns about peak electrified heating loads

No direct electric heating for 1 – 3 storeys detached, semi-detached and terraced homes


For multi-storey dwellings, certifiers may consider an exemption.

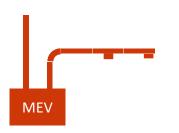
Criteria	Carbonlite Retrofit Step-by-step
Ensure ventilation	Continuous MEV or MVHR must be installed: follow PAS 2035 Annexe C or as required by Part F of the Building Regulations.
Airtightness (q50)	≤5.0 m³/m².h
Thermal Comfort	PHPP modelled overheating risk, <10% Acceptable (Guidance: <5% Good practice or <3% Best practice)

Some Immediate benefits to occupier

2: Healthy

Air Quality (IAQ)
PAS 2035 Annex C
Now free!
You may be using it anyway
May go beyond part F

Criteria	Carbonlite Retrofit Step-by-step
Ensure ventilation	Continuous MEV or MVHR must be installed: follow PAS 2035 Annexe C or as required by Part F of the Building Regulations.
Airtightness (q50)	≤5.0 m³/m².h
Thermal Comfort	PHPP modelled overheating risk, <10% Acceptable (Guidance: <5% Good practice or <3% Best practice)


2: Healthy

Airtightness to minimise energy loss and discomfort from draughts.

Notice it is a q₅₀ (air permeability), m³/m².hr not air changes per hour, ach

Why?

Change made to bring in line with UK practice Allows us to concentrate on fabric quality

Criteria	Carbonlite Retrofit Step-by-step		
Ensure ventilation	Continuous MEV or MVHR must be installed: follow PAS 2035 Annexe C or as required by Part F of the Building Regulations.		
Airtightness (q50)	≤5.0 m³/m².h		
Thermal Comfort	PHPP modelled overheating risk, <10% Acceptable (Guidance: <5% T Good practice or <3% Best		

Window design
Shading
Ventilation
Building Fabric

2: Healthy

Criteria Carbonlite Retrofit Step-by-step report result N/A. If some additional & significant fabric measures are being replaced or installed, certifiers will advise whether full Retrofit Standard requirements are applicable. Running cost comparison Must be same/lower running costs than base case **

CarbonLite Retrofit (Step 1)

No barriers to future maximum benefits to occupier

3: Path to Energy Efficiency

Medium Term Improvement Plan Identified (+ future airtightness measures)

HP costs must be the same or less using standardised costs from Ofgem

More detail in Q/A

CarbonLite Retrofit Step-by-step

Project name: 20 Stevens Road

AECB Approved Certifier: Jack Robbins

	つ	Actual	ual Required	
a	Space Heat Demand	120	-	kWh/m ² .yr
_Summer com	comfort-overheating risk	1%		missing data
	Airtightness q ₅₀	4.9	5	m³/m².h
	Non Renewable PE	150	-	kWh/m ⁺ .yr

3 Path to Energy Efficiency

- ✓ Medium Term Improvement Plan identified
- ✓ HP Running costs no more than pre-retrofit

Healthy

- ✓ ventilation system for reliable air quality
- Airtightness to minimise energy loss and discomfort from draughts

Low Carbon

HP with efficient flow temperature

Reliable Design

- ✓ Quality assurance system
- Certified by trained professionals

Certifier Signature:

Certificate issue date: 16/08/2023

Certificate ID: MARTEL-001-N

Progress towards **Full Retrofit**

CarbonLite New Build

Project name:

AECB Approved Certifier:

	Actual	Required	
Space Heat Demand	39	40	kWh/m ² .yr
Summer comfort overheating risk	1%	10%	
Airtightness q ₅₀	1.49	1.5	m ³ /m ² .h
Non Renewable PE	82	85	kWh/m².yr

Energy Efficient

Minimises space heating and cooling .

Healthy

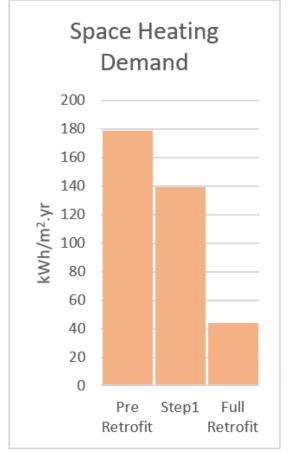
- ✓ healthy temperature in winter and summer •
- ✓ ventilation system for reliable air quality
- ✓ designed out condensation and mould
- designed out draughts

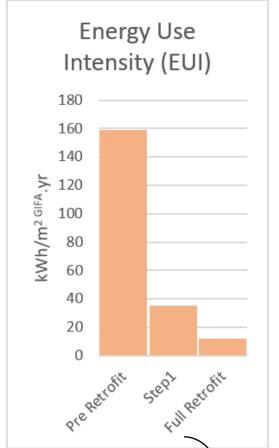
building fabric multiple benefits

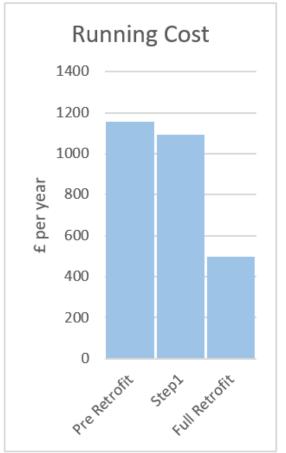
Low Carbon

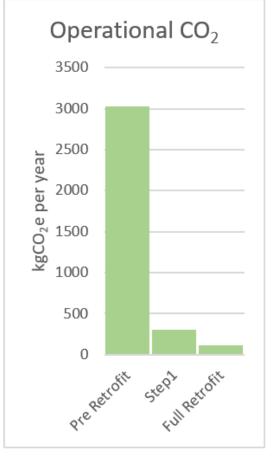
- ✓ HP with efficient flow temperature

Reliable Design


- Quality assurance system
- Certified by trained professionals


Certifier Signature:


Certificate issue date: 19/12/2023


Certificate ID: MARTEL-001-N

Space Heating Performance Comparison

have to enter GIFA Gross Internal Floor Area

Quality Assurance

Evidence to prove built as designed

Photographs

Pre_Retrofit_

elev_South
elev_North
elev_West
elev East

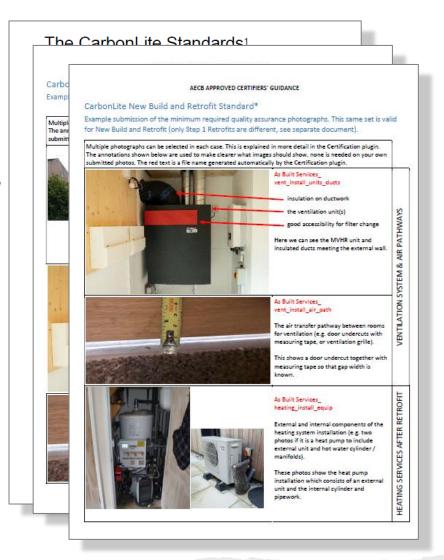
As Built Services

vent_install_units_ducts
vent_install_air_path
heating_install_equip
heating_install_emitters

GA Photo_

as_built elev_South
as_built elev_North
as_built elev_West
as_built elev_East

Documents or 3rd party


As Built Design & Calc_

layout_design data_ventilation report_MCS

Certificates

q50 ATTMA TSL4
space heating_commissioning
hot water system_commissioning
vent_commissioning

Provide 3 PHPPs

Use these values in the MCS calculation

use these values in the MCS caclulation

Effective peak air change rate (ACH)	4.73
Ground Factor (no units)	0.310
Wall Main House, W/m2.K	0.642
Wall2, W/m2.K	0.312
Loft Ins, W/m2.K	0.109
Suspended Floor, W/m2.K	0.608
Solid Floor, W/m2.K	0.662
Party Wall, W/m2.K	1.204

Boiler Upgrade Scheme (BUS) £7,500 off the cost of an ASHP (or GSHP) if done by MCS certified installer – further criteria

Some of the data collected feeds directly into the MCS calculation

QUESTIONS

Q. Does the large ASHP in Step1 mean you are completely stuck

Will a deep retrofit make my heat pump inefficient? i.e. Step1 lock-in?

1) Rads

No, larger rads for Step1 allows you to reduce the temp for Full Retrofit. Properly sized rads result in an efficient system

2) ASHP

HP can modulate down to 30%/25% - so when weather is warmer a large heat pump won't become less efficient than in colder weather

Can reduce the heating hours in warmer weather, could use a tariff that gives you cheaper offpeak rates - e.g. Octopus gives you cheaper rates outside peak hours